Tag Archives: china roller chain drive

China Hot selling Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets

Product Description

Business type

Manufacturer & Exporter

Main export market

Europe, North and South America, Southeast Asia, Oceania, Middle East, Africa

Material

Alloy Steel, Carbon Steel, Stainless Steel,Aluminum, Copper, Brass

Manufacturing method

Forged and then machined, hobbed, if need can also weld

Heat treatment

Hardening and Tempering, High Frequency Quenching, Carburizing Quenching

Surface treatment

Oxide black, Galvanized, Nickel plated, Chrome plated,Painted and so on

Model

ANSI: 25/35/41/40/50/60/80/100/120/140/160/180/200/240

DIN/ISO:04C/06C/085/08A/10A/12A/16A/20A/24A/28A/32A/36A/40A/48A

DIN/ISO:04B/05B/06B/08B/10B/12B/16B/20B/24B/28B/32B/36B/40B/48B

Process

Forging, Hobbing, Precision machining

Teeth

8T-100T

Type

Type A sprockets :Plate (without Hub)

Type B sprockets:One side with hub

Type C sprockets: Double side with hub

Finished bore sprockets:With the inner hole ,keyway and screw

1.Fast delivery: Standard products can be delivered in as fast as 20 days
2.Good service: timely reply, prompt quotation, responsible for the product
3.High cost performance: can maintain price stability for a certain period of time, bringing greater profits to customers
4.Good quality: production and testing have corresponding supervision to ensure product quality and get high praise from customers
5.OEM service: products can be customized according to drawings and requirements

We are responsible for the ordered products. We are very confident in the products we produce. Of course, if you have any problems after receiving the goods, you can contact us directly. We will confirm and negotiate in time to solve your difficulties.


  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Samples:
US$ 35/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

wheel sprocket

wheel sprocket System in Heavy Machinery and Industrial Equipment

Yes, a wheel sprocket system is commonly used in heavy machinery and industrial equipment for power transmission and motion control. The wheel sprocket configuration is a versatile and efficient method of transmitting rotational force between two shafts.

In heavy machinery and industrial equipment, the wheel is typically attached to one shaft, while the sprocket is mounted on another shaft. A chain or a toothed belt is wrapped around the wheel sprocket, connecting them. When the wheel is rotated, the chain or belt engages with the sprocket, causing the sprocket and the connected shaft to rotate as well. This mechanism allows the transfer of power from one shaft to the other, enabling various components and parts of the machinery to function.

Common applications of the wheel sprocket system in heavy machinery include:

  • Construction Machinery: Wheel loaders, excavators, cranes, and other construction equipment often use wheel sprocket systems for efficient power transmission in various moving parts.
  • Material Handling Equipment: Forklifts, conveyor systems, and other material handling equipment utilize wheel sprocket configurations to move goods and materials smoothly and reliably.
  • Mining Equipment: Mining machinery, such as drilling rigs and conveyors, often incorporate wheel sprocket assemblies for power transmission in challenging environments.
  • Agricultural Machinery: Tractors, combines, and other agricultural equipment use wheel sprocket systems to drive various components like wheels and harvesting mechanisms.
  • Industrial Robotics: Robots and automated systems in manufacturing often utilize wheel sprocket setups for precise motion control and efficient power transmission.

One of the key advantages of the wheel sprocket system is its ability to handle heavy loads and transmit power over long distances. It is a reliable and cost-effective method of power transmission in various industrial settings. However, proper maintenance and alignment are crucial to ensuring the system’s optimal performance and longevity.

Overall, the wheel sprocket system is a widely used and effective power transmission solution in heavy machinery and industrial equipment, offering versatility and efficiency in a range of applications.

wheel sprocket

Using wheel sprocket Assembly in Robotics and Automation

Yes, wheel sprocket assemblies are commonly used in robotics and automation systems to transmit power and facilitate movement. These systems offer several advantages for robotic applications:

  • Efficiency: wheel sprocket assemblies provide efficient power transmission, ensuring smooth and precise movement of robotic components.
  • Compact Design: The compact nature of sprockets and wheels allows for space-saving designs, making them ideal for robotic applications where space is limited.
  • Precision: Sprockets and wheels with accurate teeth profiles provide precise motion control, crucial for robotics and automation tasks that require high levels of accuracy.
  • Low Noise: Properly lubricated and maintained wheel sprocket systems generate minimal noise during operation, contributing to quieter robotic movements.
  • Customizability: wheel sprocket assemblies can be customized to suit specific robotic requirements, such as different gear ratios, sizes, and materials.
  • Multiple Configurations: Depending on the robotic application, different configurations like single or multiple sprockets, idler sprockets, or rack and pinion systems can be used.
  • High Load Capacity: Sprockets made from durable materials like steel can handle substantial loads, making them suitable for heavy-duty robotic tasks.

Examples of robotics and automation systems that commonly use wheel sprocket assemblies include:

  • Robotic Arms: wheel sprocket systems are utilized in robotic arms to control their movement and reach.
  • Automated Guided Vehicles (AGVs): AGVs use wheel sprocket assemblies for propulsion and steering, enabling them to navigate autonomously.
  • Conveyor Systems: In automated factories, conveyor belts are often driven by sprockets and wheels for efficient material handling.
  • Mobile Robots: Wheeled mobile robots use wheel sprocket assemblies to drive their wheels, enabling them to move in various directions.
  • Robot Grippers: wheel sprocket mechanisms can be integrated into robot grippers to facilitate gripping and handling objects.

The choice to use wheel sprocket assemblies in robotics and automation depends on the specific application requirements, load capacity, precision, and environmental conditions. By selecting the appropriate sprockets, wheels, and materials, engineers can ensure reliable and efficient robotic performance in a wide range of automated tasks.

wheel sprocket

Can a wheel sprocket System be Used in Bicycles and Other Vehicles?

Yes, a wheel sprocket system is commonly used in bicycles and various other vehicles. In bicycles, the wheel sprocket system is a fundamental part of the drivetrain, which transfers power from the rider’s legs to the wheels, propelling the bicycle forward.

The typical bicycle drivetrain consists of a chain, front sprockets (chainrings), rear sprockets (cassette), and the bicycle’s wheels. When the rider pedals the bicycle, the chain engages with the sprockets, and as a result, the rotational motion from the pedaling is transferred to the rear wheel.

The selection of sprocket sizes (number of teeth on chainrings and cassette) can affect the gear ratio, allowing cyclists to adjust their pedaling effort and speed to suit different terrains and riding conditions. Smaller sprockets provide easier pedaling for climbing steep hills, while larger sprockets offer higher speeds on flat or downhill sections.

Beyond bicycles, the wheel sprocket system is widely used in various other vehicles and machinery to transmit power and control speed. It can be found in motorcycles, mopeds, electric scooters, and even some small electric vehicles. Additionally, the wheel sprocket system is prevalent in industrial machinery, where precise speed control and torque transmission are essential.

The efficiency and reliability of the wheel sprocket system make it a versatile and practical choice for many vehicles and mechanical applications.

China Hot selling Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets  China Hot selling Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets
editor by Dream 2024-05-16

China supplier Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets

Product Description

Business type

Manufacturer & Exporter

Main export market

Europe, North and South America, Southeast Asia, Oceania, Middle East, Africa

Material

Alloy Steel, Carbon Steel, Stainless Steel,Aluminum, Copper, Brass

Manufacturing method

Forged and then machined, hobbed, if need can also weld

Heat treatment

Hardening and Tempering, High Frequency Quenching, Carburizing Quenching

Surface treatment

Oxide black, Galvanized, Nickel plated, Chrome plated,Painted and so on

Model

ANSI: 25/35/41/40/50/60/80/100/120/140/160/180/200/240

DIN/ISO:04C/06C/085/08A/10A/12A/16A/20A/24A/28A/32A/36A/40A/48A

DIN/ISO:04B/05B/06B/08B/10B/12B/16B/20B/24B/28B/32B/36B/40B/48B

Process

Forging, Hobbing, Precision machining

Teeth

8T-100T

Type

Type A sprockets :Plate (without Hub)

Type B sprockets:One side with hub

Type C sprockets: Double side with hub

Finished bore sprockets:With the inner hole ,keyway and screw

1.Fast delivery: Standard products can be delivered in as fast as 20 days
2.Good service: timely reply, prompt quotation, responsible for the product
3.High cost performance: can maintain price stability for a certain period of time, bringing greater profits to customers
4.Good quality: production and testing have corresponding supervision to ensure product quality and get high praise from customers
5.OEM service: products can be customized according to drawings and requirements

We are responsible for the ordered products. We are very confident in the products we produce. Of course, if you have any problems after receiving the goods, you can contact us directly. We will confirm and negotiate in time to solve your difficulties.


  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Samples:
US$ 35/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

wheel sprocket

How to Identify and Troubleshoot Common Issues with Wheels and Sprockets

Identifying and troubleshooting common issues with wheels and sprockets can help you maintain their proper functioning and prevent potential problems. Here are some steps to follow:

  • Abnormal Noise: If you notice unusual noise during operation, it could indicate misalignment, worn sprockets, or a loose chain. Check for any loose bolts or fasteners and ensure proper alignment of the sprockets.
  • Chain Slippage: Chain slippage can occur due to insufficient tension or worn-out sprocket teeth. Check the chain tension and adjust it to the recommended level. Inspect the sprocket teeth for signs of wear and replace them if necessary.
  • Uneven Wear: Uneven wear on the sprocket teeth can be a result of misalignment or a worn-out chain. Check the alignment of the sprockets and adjust as needed. If the chain is stretched or has damaged links, replace it with a new one.
  • Excessive Vibration: Excessive vibration may be caused by imbalanced wheels or misaligned sprockets. Check for any bent or damaged wheels and ensure proper alignment of the sprockets.
  • Chain Skipping: If the chain skips over the sprocket teeth during operation, it could be due to worn sprocket teeth or a loose chain. Inspect the sprocket teeth for signs of wear and replace them if necessary. Adjust the chain tension to the proper level.
  • Chain Jamming: Chain jamming can occur if there is debris or dirt between the chain and sprockets. Clean the chain and sprockets thoroughly to remove any obstructions.
  • Excessive Chain Wear: Regularly inspect the chain for signs of wear, such as elongation, damaged links, or rust. Replace the chain if it is significantly worn to avoid damage to the sprockets.
  • Overheating: Overheating can be caused by high friction between the chain and sprockets or improper lubrication. Ensure proper lubrication and check for any misalignment or tight spots in the system.

By identifying these common issues and performing regular inspections, you can troubleshoot problems early on and take appropriate corrective measures, ensuring the smooth operation and longevity of the wheel sprocket assembly.

wheel sprocket

Special Considerations for Using a wheel sprocket System in Off-Road Vehicles

Off-road vehicles operate in rugged and challenging environments, which can put additional stress on the wheel sprocket system. Here are some special considerations to keep in mind when using a wheel sprocket system in off-road vehicles:

  1. Material Selection: Choose high-quality materials for the wheel sprocket that can withstand rough terrains, impacts, and exposure to elements. Materials like hardened steel or alloys with good impact resistance are commonly used.
  2. Sealing and Protection: Ensure that the wheel bearings and sprocket teeth are adequately sealed to prevent dirt, mud, water, and other debris from entering. Proper sealing helps to maintain smooth operation and prolong the lifespan of components.
  3. Reinforcement: Consider reinforcing the wheel sprocket assembly if the vehicle will encounter heavy loads or extreme conditions. Reinforcements can add strength and durability to handle challenging off-road conditions.
  4. Lubrication: Use a high-quality lubricant suitable for off-road conditions. Frequent lubrication is crucial to reduce friction, prevent corrosion, and protect components from wear and tear.
  5. Regular Inspection: Off-road vehicles experience higher vibrations and shocks, leading to accelerated wear. Perform regular inspections to detect any signs of damage, misalignment, or wear. Address issues promptly to avoid further problems.
  6. Shock Absorption: Consider incorporating shock-absorbing features or suspension systems to mitigate the impact on the wheel sprocket system during off-road driving. This helps to protect the components and improve overall vehicle performance.
  7. Environmental Considerations: Off-road environments often expose the wheel sprocket system to dirt, sand, water, and other harsh elements. Choose coatings or treatments that offer corrosion resistance to protect against environmental damage.
  8. Weight Consideration: Off-road vehicles may need to be lightweight to navigate difficult terrains effectively. Ensure the wheel sprocket components strike a balance between durability and weight to optimize vehicle performance.
  9. Service and Maintenance: Establish a regular maintenance schedule and perform necessary servicing after each off-road trip. Cleaning, inspection, and replacement of worn parts are vital to ensure the system’s reliability.

By taking these special considerations into account, the wheel sprocket system in off-road vehicles can withstand the demands of rough terrains and provide reliable performance in challenging environments.

wheel sprocket

Choosing the Right Size of Sprocket to Match a Wheel

Choosing the correct size of sprocket to match a wheel is essential for ensuring efficient power transmission and proper functionality of a mechanical system. Here are the steps to help you choose the right size of sprocket:

1. Determine the Pitch Diameter of the Wheel:

Measure the diameter of the wheel from the center to the point where the teeth of the sprocket will engage with the wheel. This measurement is known as the pitch diameter of the wheel.

2. Identify the Desired Gear Ratio:

Determine the gear ratio you want to achieve for your application. The gear ratio is the ratio of the number of teeth on the sprocket to the number of teeth on the wheel and determines the speed and torque output.

3. Calculate the Number of Teeth on the Sprocket:

Once you have the pitch diameter of the wheel and the desired gear ratio, you can calculate the number of teeth on the sprocket using the formula:

Number of Teeth on Sprocket = (Desired Gear Ratio) * (Number of Teeth on Wheel)

4. Select a Standard Sprocket Size:

Based on the calculated number of teeth on the sprocket, choose a standard sprocket size that comes closest to the calculated value. Sprockets are available in various tooth counts, and you may need to choose the nearest size available.

5. Consider Chain Compatibility:

If you are using a chain drive system, ensure that the selected sprocket is compatible with the chain you plan to use. The chain pitch (distance between the centers of adjacent roller pins) should match the pitch of the sprocket.

6. Verify Center Distance:

Check that the center distance between the wheel and the sprocket is appropriate for your application. The center distance is the distance between the centers of the wheel and the sprocket and should be set to achieve the desired tension and alignment of the chain or belt.

7. Consider the Material and Tooth Profile:

Select a sprocket material suitable for your application, such as steel, stainless steel, or plastic, based on factors like load, environment, and operating conditions. Additionally, consider the tooth profile (standard or custom) to ensure smooth engagement with the chain or belt.

By following these steps and considering the specific requirements of your machinery and mechanical system, you can choose the right size of sprocket to match your wheel and achieve optimal performance and longevity of the system.

China supplier Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets  China supplier Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets
editor by Dream 2024-05-16

China Good quality Wholesale Price C2042 C2052 C2062 Drive Chain Stainless/Carbon Steel Conveyor Roller Chain

Product Description

 

Product Description

 

Item Name  Hollow Pin Chains  Model Standard
Row Simplex
Duplex
Triplrex
Application Machinery Parts
Suiface Treament netural/sand-blasted/shot-peening Certification  ISO, ANSI, DIN, BS
Packing Packaged in boxes and wooden cases, or packaged in reels and then on pallets Port Any sea port or airport in china

 

Contact us

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle
Surface Treatment: Netural/Sand-Blasted/Shot-Peening
Structure: Roller Chain
Material: Carbon Steel
Type: Short Pitch Chain
Samples:
US$ 3.7/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

drive chain

Can a drive chain be used in a HVAC or ventilation system?

Yes, a drive chain can be used in HVAC (Heating, Ventilation, and Air Conditioning) or ventilation systems where reliable and efficient power transmission is required. Here is a detailed explanation:

HVAC and ventilation systems utilize various components such as fans, blowers, dampers, and louvers to control air flow, temperature, and humidity in residential, commercial, and industrial buildings. Drive chains offer several advantages in these applications:

  • Reliable Power Transmission: Drive chains provide reliable power transmission for HVAC and ventilation systems. They are capable of transmitting power over long distances, accommodating various speeds and torque requirements, and operating in different directions of rotation.
  • Flexible System Design: Drive chains offer flexibility in system design and layout. They can be easily configured to connect and drive multiple components, such as fans, motors, and dampers, allowing for efficient control and adjustment of air flow and system performance.
  • Accurate Speed Control: Drive chains allow for precise speed control in HVAC systems. By using sprockets of different sizes or incorporating variable speed drives, the rotational speed of fans or blowers can be adjusted to achieve the desired air flow rates and maintain optimal environmental conditions.
  • High Load Capacity: HVAC and ventilation systems often require components to handle significant air volumes and pressure differentials. Drive chains are designed to handle high loads and transmit power effectively, ensuring reliable operation of fans, blowers, and other equipment.
  • Durability and Longevity: Drive chains are engineered to withstand the demanding conditions of HVAC and ventilation systems. They are designed to resist wear, corrosion, and fatigue, ensuring durability and long service life even in continuous or high-cycle operations.
  • Quiet Operation: Drive chains, when properly lubricated and maintained, can operate quietly in HVAC systems, minimizing noise and vibration levels. This is crucial for maintaining a comfortable and noise-free environment in residential, commercial, or institutional settings.

When selecting a drive chain for HVAC or ventilation applications, factors such as load capacity, speed requirements, environmental conditions (such as temperature and humidity), and maintenance considerations should be taken into account.

Regular inspection, lubrication, and tension adjustment are important for ensuring the optimal performance and longevity of the drive chain in HVAC and ventilation systems.

By utilizing drive chains in HVAC and ventilation systems, operators can benefit from reliable power transmission, flexible system design, accurate speed control, high load capacity, durability, longevity, and quiet operation, contributing to efficient and effective air conditioning and ventilation in various building environments.

drive chain

How does the elongation of a drive chain affect its performance?

The elongation of a drive chain can have a significant impact on its performance and overall operation. Here is a detailed explanation:

Drive chains are subject to wear and elongation over time due to factors such as load, speed, tension, lubrication, and maintenance. Elongation refers to the increase in the chain’s pitch length, which can lead to several performance-related issues:

  • Loss of Tension: As a chain elongates, it loses tension and becomes slack. This results in a loss of power transmission efficiency and can lead to skipping or jumping of the chain on the sprockets. A slack chain may also cause a loss of accuracy and synchronization in driven systems.
  • Poor Performance: Elongation can affect the overall performance of the drive system. It can lead to increased backlash, reduced precision, and the potential for chain derailment or disengagement from the sprockets. These issues can result in decreased efficiency, unreliable operation, and increased risk of damage to the chain or other components.
  • Increased Wear: Elongation causes increased wear between the chain links, pins, and bushings. This wear can accelerate the elongation process and further decrease the chain’s performance and service life. It can also lead to increased friction, heat generation, and the potential for chain failure if not addressed promptly.
  • Reduced Load-Carrying Capacity: Elongation reduces the effective pitch length of the chain, resulting in a decreased load-carrying capacity. This can limit the chain’s ability to handle heavy loads, potentially leading to premature failure or inadequate performance in applications where high loads are involved.
  • Increased Noise and Vibration: Elongation can cause increased noise and vibration during chain operation. The slack chain may produce rattling or banging sounds, and the vibration can negatively affect the overall system performance and operator comfort.

Regular inspection and maintenance are essential to monitor chain elongation and address it promptly. Measuring elongation using specialized tools and following the manufacturer’s recommended elongation limits can help determine when a chain requires replacement or adjustment.

Proper chain tension, lubrication, and regular maintenance practices, including periodic tension adjustment and lubrication replenishment, can help minimize elongation and ensure optimal chain performance. It is important to follow the manufacturer’s guidelines and consult with experts or technicians to establish appropriate maintenance schedules and procedures for the specific drive chain and application.

China Good quality Wholesale Price C2042 C2052 C2062 Drive Chain Stainless/Carbon Steel Conveyor Roller Chain  China Good quality Wholesale Price C2042 C2052 C2062 Drive Chain Stainless/Carbon Steel Conveyor Roller Chain
editor by CX 2024-05-08

China Hot selling 32A-2 160-2 ISO/DIN Drive Roller Chain Link Industrial Transmission Conveyor Chain

Product Description

Product

Standard Double Pitch Roller chain

Material

40Mn steel,304 stainless steel, 316 stainless steel and 201 stainless steel.

Types

Standard chains and special chains, such as A or B series chains, roller chains, driving chains, conveyor chains, hoisting chains, agricultural chains, sprockets, gears, wheels and so on.

Series

 A series(12.7-50.8mm pitches),B series (9.525-50.8mm pitches)and the heavy series.

Short pitch precision roller chain

Simplex Roller Chains&Bushing Chains: 

04C-1,06C-1,085-1,08A-1,10A-1,12A-1,16A-1,20A-1,24A-1,28A-1,32A-1,36A-1,40A-1,48A-1
Duplex Roller Chains&Bushing Chains:

04C-2,06C-2,085-2,08A-2,10A-2,12A-2,16A-2,20A-2,24A-2,28A-2,32A-2,36A-2,40A-2,48A-2
Triplex Roller Chains&Bushing Chains:

04C-3,06C-2,085-3,08A-3,10A-3,12A-3,16A-3,20A-3,24A-3,28A-3,32A-3,36A-3,40A-3,48A-3

Chain link type

Standard links (without attachment) and non-standard links (with attachment).

 

A1: One-side,one hole cranked attachments.
A2: One-side,two holes cranked attachments.
K1: Both-side,one hole cranked attachments.
K2: Both-side,two hole cranked attachments.
D1: One-side,an extended pin on every outer link.
D3: One-side,two extended pin on every outer link.

Our Products Advantage

1. Every step from production order to the packing process has a strict quality inspection.
2. We have standard roller chain with 1.5 CHINAMFG (DIN. ANSI.); Non-standard roller chain (customized acording to customer drawings).
3. Export products with high quality and low price.
4.We have a good service before and after-sale.

1.Fast delivery: Standard products can be delivered in as fast as 20 days
2.Good service: timely reply, prompt quotation, responsible for the product
3.High cost performance: can maintain price stability for a certain period of time, bringing greater profits to customers
4.Good quality: production and testing have corresponding supervision to ensure product quality and get high praise from customers
5.OEM service: products can be customized according to drawings and requirements

We are responsible for the ordered products. We are very confident in the products we produce. Of course, if you have any problems after receiving the goods, you can contact us directly. We will confirm and negotiate in time to solve your difficulties.


  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Alloy
Structure: Roller Chain
Surface Treatment: Polishing
Samples:
US$ 35/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

conveyor

What are the considerations for selecting a corrosion-resistant conveyor chain?

When selecting a corrosion-resistant conveyor chain, several considerations should be taken into account to ensure optimal performance and longevity in corrosive environments. Here are the key factors to consider:

– Material Selection:

Choose a conveyor chain material that is resistant to the specific corrosive agents present in the environment. Stainless steel, plastic, and special coatings such as zinc or nickel plating are commonly used for their corrosion resistance properties.

– Corrosion Resistance Ratings:

Review the corrosion resistance ratings of different chain materials and coatings. Look for industry standards such as ASTM or ISO ratings that indicate the material’s resistance to specific corrosive substances or environmental conditions.

– Environmental Factors:

Consider the specific environmental factors that contribute to corrosion, such as humidity, temperature, presence of chemicals or solvents, and exposure to saltwater or acids. Evaluate how these factors may impact the chain’s corrosion resistance requirements.

– Coating or Surface Treatment:

If using a metal chain, consider applying additional coatings or surface treatments to enhance its corrosion resistance. Options may include electroplating, powder coating, or using specialized anti-corrosion coatings.

– Compatibility with Cleaning Methods:

Ensure that the selected chain material is compatible with the cleaning methods and chemicals used in the application. Some corrosive-resistant materials may require specific cleaning procedures to maintain their performance and longevity.

– Operational Considerations:

Take into account the load capacity, speed, and operational requirements of the conveyor system. Ensure that the corrosion-resistant chain can withstand the mechanical stresses and operational demands without compromising its corrosion resistance properties.

– Cost-Effectiveness:

Weigh the initial cost and long-term benefits of using a corrosion-resistant conveyor chain. While corrosion-resistant materials may have a higher upfront cost, they can significantly reduce maintenance, replacement, and downtime costs associated with corrosion-related failures.

By considering these factors, you can select a corrosion-resistant conveyor chain that is well-suited for the specific corrosive environment, ensuring reliable and durable performance in applications such as chemical processing, food production, wastewater treatment, or outdoor environments.

conveyor

How does a conveyor chain impact material flow in a production line?

A conveyor chain plays a crucial role in facilitating the smooth and efficient flow of materials in a production line. Here are the key ways in which a conveyor chain impacts material flow:

1. Continuous Movement: A conveyor chain enables continuous movement of materials along the production line. By securely holding and transporting the materials, the chain ensures a consistent flow without interruptions or delays.

2. Speed Control: The speed at which the conveyor chain moves can be adjusted to match the desired production rate. This allows for precise control over the material flow, ensuring that it aligns with the downstream processes and avoids bottlenecks or overloading.

3. Orientation and Positioning: Conveyor chains can be designed with specific attachments or fixtures to orient and position materials in a desired manner. This ensures that the materials are presented correctly for processing, assembly, or packaging, optimizing the overall production flow.

4. Sorting and Diverging: In certain applications, conveyor chains can be equipped with mechanisms for sorting or diverging materials based on predetermined criteria. This allows for efficient routing of different products or components to their respective destinations, streamlining the material flow.

5. Accumulation and Buffering: Conveyor chains can incorporate accumulation zones or buffering areas where materials can temporarily pause or accumulate. This feature is useful when downstream processes experience temporary disruptions or when there is a need to balance the flow between different production stages.

6. Integration with Equipment: Conveyor chains can be integrated with other equipment or machines in the production line, such as robotic arms, automated packaging systems, or inspection stations. This seamless integration enables synchronized material handling, optimizing the flow and efficiency of the entire production process.

7. Customization for Specific Needs: Conveyor chains can be customized to meet specific material handling requirements. This includes considerations such as chain width, length, height adjustments, inclines or declines, and specialized attachments or guides. Such customization ensures that the material flow is tailored to the unique needs of the production line.

By providing a reliable and controlled method of transporting materials, a conveyor chain significantly influences the material flow in a production line. It enhances productivity, reduces manual handling, minimizes the risk of errors or damage, and ultimately contributes to the overall efficiency and success of the manufacturing process.

conveyor

What are the different types of conveyor chains?

There are several types of conveyor chains available, each designed to meet specific application requirements. Here are some common types of conveyor chains:

  • Roller chains: Roller chains are the most commonly used type of conveyor chain. They consist of a series of cylindrical rollers connected by side plates. Roller chains provide smooth and efficient movement and are suitable for medium to heavy-duty applications.
  • Double pitch chains: Double pitch chains have larger pitch (distance between the centers of adjacent pins) compared to standard roller chains. They are often used in applications that require slower speeds and lighter loads.
  • Hollow pin chains: Hollow pin chains have hollow pins that allow for easy attachment of various accessories or attachments. They are commonly used in conveying applications that require customization or where attachments need to be mounted.
  • Apron or slat chains: Apron or slat chains consist of plates or slats that are connected by hinges. They are used in heavy-duty applications where the chain needs to support and carry large loads or withstand harsh environments.
  • Plastic chains: Plastic chains are made of durable and lightweight materials such as acetal or polyethylene. They offer benefits such as corrosion resistance, low noise levels, and the ability to work in wet or washdown environments. Plastic chains are commonly used in food processing, packaging, and pharmaceutical industries.

These are just a few examples of conveyor chain types, and there are many other variations available depending on specific application requirements. The selection of the appropriate conveyor chain type depends on factors such as load capacity, speed, environment, and desired functionality.

China Hot selling 32A-2 160-2 ISO/DIN Drive Roller Chain Link Industrial Transmission Conveyor Chain  China Hot selling 32A-2 160-2 ISO/DIN Drive Roller Chain Link Industrial Transmission Conveyor Chain
editor by CX 2024-05-07

China Professional Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets

Product Description

Business type

Manufacturer & Exporter

Main export market

Europe, North and South America, Southeast Asia, Oceania, Middle East, Africa

Material

Alloy Steel, Carbon Steel, Stainless Steel,Aluminum, Copper, Brass

Manufacturing method

Forged and then machined, hobbed, if need can also weld

Heat treatment

Hardening and Tempering, High Frequency Quenching, Carburizing Quenching

Surface treatment

Oxide black, Galvanized, Nickel plated, Chrome plated,Painted and so on

Model

ANSI: 25/35/41/40/50/60/80/100/120/140/160/180/200/240

DIN/ISO:04C/06C/085/08A/10A/12A/16A/20A/24A/28A/32A/36A/40A/48A

DIN/ISO:04B/05B/06B/08B/10B/12B/16B/20B/24B/28B/32B/36B/40B/48B

Process

Forging, Hobbing, Precision machining

Teeth

8T-100T

Type

Type A sprockets :Plate (without Hub)

Type B sprockets:One side with hub

Type C sprockets: Double side with hub

Finished bore sprockets:With the inner hole ,keyway and screw

1.Fast delivery: Standard products can be delivered in as fast as 20 days
2.Good service: timely reply, prompt quotation, responsible for the product
3.High cost performance: can maintain price stability for a certain period of time, bringing greater profits to customers
4.Good quality: production and testing have corresponding supervision to ensure product quality and get high praise from customers
5.OEM service: products can be customized according to drawings and requirements

We are responsible for the ordered products. We are very confident in the products we produce. Of course, if you have any problems after receiving the goods, you can contact us directly. We will confirm and negotiate in time to solve your difficulties.


  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Samples:
US$ 35/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

wheel sprocket

Safety Precautions for Working with wheel sprocket Systems

Working with wheel sprocket systems involves potential hazards, and it’s essential to follow safety precautions to prevent accidents and injuries. Here are some safety measures to consider:

  • Proper Training: Ensure that anyone working with the wheel sprocket systems is adequately trained in their operation, maintenance, and safety procedures.
  • Use Personal Protective Equipment (PPE): Always wear appropriate PPE, such as safety glasses, gloves, and protective clothing, to protect against potential hazards.
  • Lockout/Tagout: Before performing any maintenance or repair work on the system, follow lockout/tagout procedures to prevent accidental startup or energization.
  • Keep Work Area Clean: Maintain a clean work area and remove any debris or obstacles that could interfere with the operation of the system.
  • Inspect Regularly: Regularly inspect the wheels, sprockets, and chains for signs of wear, damage, or misalignment. Address any issues promptly.
  • Ensure Proper Lubrication: Adequate lubrication of the sprockets and chains is crucial for smooth operation and to reduce friction and wear.
  • Check Tension: Verify that the chain tension is within the recommended range. Too loose or too tight tension can lead to operational problems.
  • Avoid Loose Clothing: Keep long hair, loose clothing, and jewelry away from moving parts to avoid entanglement.
  • Follow Manufacturer’s Guidelines: Adhere to the manufacturer’s guidelines and recommendations for installation, operation, and maintenance of the wheel sprocket system.
  • Use Guards and Enclosures: Install appropriate guards and enclosures to protect against contact with moving parts.
  • Safe Handling: When transporting or handling heavy wheels or sprockets, use proper lifting techniques and equipment.

Prioritizing safety when working with wheel sprocket systems is essential to prevent accidents and maintain a safe working environment. Always be vigilant, follow safety protocols, and address any concerns promptly to ensure the well-being of everyone involved.

wheel sprocket

Noise and Vibration in wheel sprocket Configurations

In a wheel sprocket configuration, noise and vibration levels can vary depending on several factors:

  1. Quality of Components: The quality of the wheel sprocket components can significantly impact noise and vibration. Well-manufactured and precisely engineered components tend to produce less noise and vibration.
  2. Lubrication: Proper lubrication of the sprocket teeth and chain or belt can reduce friction, which in turn helps minimize noise and vibration.
  3. Alignment: Correct alignment between the wheel sprocket is crucial. Misalignment can lead to increased noise and vibration as the components may not mesh smoothly.
  4. Tension: Maintaining the appropriate tension in the chain or belt is essential. Insufficient tension can cause the chain to slap against the sprocket teeth, resulting in noise and vibration.
  5. Speed and Load: Higher speeds and heavier loads can lead to increased noise and vibration levels in the system.
  6. Wear and Damage: Worn-out or damaged components can create irregularities in motion, leading to increased noise and vibration.

To reduce noise and vibration in a wheel sprocket setup:

  • Use high-quality components from reputable suppliers.
  • Ensure proper lubrication with appropriate lubricants.
  • Regularly inspect and maintain the system to detect any misalignment, wear, or damage.
  • Follow manufacturer guidelines for chain or belt tensioning.
  • Consider using vibration-damping materials or mounting methods if necessary.

Minimizing noise and vibration not only improves the comfort and safety of the machinery but also extends the life of the components by reducing wear and fatigue.

wheel sprocket

Choosing the Right Size of Sprocket to Match a Wheel

Choosing the correct size of sprocket to match a wheel is essential for ensuring efficient power transmission and proper functionality of a mechanical system. Here are the steps to help you choose the right size of sprocket:

1. Determine the Pitch Diameter of the Wheel:

Measure the diameter of the wheel from the center to the point where the teeth of the sprocket will engage with the wheel. This measurement is known as the pitch diameter of the wheel.

2. Identify the Desired Gear Ratio:

Determine the gear ratio you want to achieve for your application. The gear ratio is the ratio of the number of teeth on the sprocket to the number of teeth on the wheel and determines the speed and torque output.

3. Calculate the Number of Teeth on the Sprocket:

Once you have the pitch diameter of the wheel and the desired gear ratio, you can calculate the number of teeth on the sprocket using the formula:

Number of Teeth on Sprocket = (Desired Gear Ratio) * (Number of Teeth on Wheel)

4. Select a Standard Sprocket Size:

Based on the calculated number of teeth on the sprocket, choose a standard sprocket size that comes closest to the calculated value. Sprockets are available in various tooth counts, and you may need to choose the nearest size available.

5. Consider Chain Compatibility:

If you are using a chain drive system, ensure that the selected sprocket is compatible with the chain you plan to use. The chain pitch (distance between the centers of adjacent roller pins) should match the pitch of the sprocket.

6. Verify Center Distance:

Check that the center distance between the wheel and the sprocket is appropriate for your application. The center distance is the distance between the centers of the wheel and the sprocket and should be set to achieve the desired tension and alignment of the chain or belt.

7. Consider the Material and Tooth Profile:

Select a sprocket material suitable for your application, such as steel, stainless steel, or plastic, based on factors like load, environment, and operating conditions. Additionally, consider the tooth profile (standard or custom) to ensure smooth engagement with the chain or belt.

By following these steps and considering the specific requirements of your machinery and mechanical system, you can choose the right size of sprocket to match your wheel and achieve optimal performance and longevity of the system.

China Professional Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets  China Professional Stainless Steel Idler Taper Transmission Drive CZPT Roller Chain and Sprockets
editor by Dream 2024-05-06

China OEM 420 428 428h 520 530 630 Motorcycle Accessories Motorcycle Roller Drive Chain with CZPT Oil Seal

Product Description

h Motorcycle Accessories Motorcycle Roller Drive Chain With CHINAMFG Oil Seal
Motorcycle Chain
1) Material: 40Mn
2) Color: nature, black, blue, yellow
3) Advanced heat treatment process, mesh belt conveyor furnace use, chain dry machine
4) Standard: ISO/ DIN /ANSI
5) Pre stretch and anti fatigue to make chain life longer
6) Manufacture and OEM
7) Packing : 1pc/pp bag, white or color inner box, then pack in standard export carton or wooden case, also can packing as your requirement
Our main products as the following:
1) Motorcycle timing chains: 25, 25H, 25SH
2) Motorcycle driven chains: 415,415H,415P,420,420H,420P,428,428H,428P,520,520H,520P,530,530H,530P,630 and series of super reinforced chain.
3) Motorcycle O-ring chain: 520-O,525-O,530-O,420H-O,428H-O,520H-O,525H-O,530H-O
4) Motorcycle HD Non-O-ring chain: 428HD,520HD,525HD,530HD,630HD
5) Motorcycle Super O-ring chain: 520-SO,525-SO,530-SO,420H-SO,428H-SO,520H-SO,525H-SO,530H-SO
6) Motorcyle silent chain: CL04A2x3, CL04A3x4, CL04A4x5, CL04A2x3, CL04A3x4, CL04A4x5
7) Automotive engine timing roller chain: 06BT-1,06BT-2,06BN-1,06BH-1,06BH-2,06BH.a-2,05E-1,05H-1,05H-2,05BT-1,05BT-2
8) Automotive engine timing bush chain: 04M-1,04M-2,219HT-1,T8F-1,05CT-1,05D-2,C06C-2,06CT-1,06CN-1,06CB-1,06CG-1,06CT-2,06CT.a-2,06CN.a-2,06D-2
9) Automotive engine timing slient chain: SCR04F-9,SCR04G-9,SCR04H-9,SCR04E-9,CL04H-9,CL04Y-9,CL04F-9,SC03-8,SCR05F-8,SCR05-9,SCR05-15,SCR06E-8

 
Applications:  
 
Our motorcycle chain are use in all kinds of motorbike like Honda, Yamaha, Suzuki, Kawasaki and so on .

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Chain
Material: Alloy Steel
Certification: ISO
Number of Row: Single Row
Surface Treatment: Grey, Yellow, Blue, Black
Module: 420, 425, 428, 428h, 520, 525, 530
Customization:
Available

|

Customized Request

drive chain

What are the benefits of using a drive chain with low maintenance requirements?

Using a drive chain with low maintenance requirements offers several benefits in industrial applications. Here is a detailed explanation:

  • Reduced Downtime: A drive chain with low maintenance requirements minimizes the need for frequent inspections, lubrication, and adjustments. This reduces the downtime associated with maintenance activities, allowing for longer periods of uninterrupted operation and increased productivity.
  • Cost Savings: With low maintenance requirements, there is a reduction in the labor, time, and cost associated with regular maintenance tasks such as lubrication, cleaning, and tension adjustments. Additionally, the longer intervals between maintenance cycles result in lower overall maintenance expenses.
  • Increased Reliability: Drive chains with low maintenance requirements are designed to be highly reliable and durable. They are engineered to withstand the demands of continuous operation without frequent maintenance interventions. This enhances the reliability of the chain, reducing the risk of unexpected failures or breakdowns that can disrupt production processes.
  • Extended Chain Life: Drive chains with low maintenance requirements often incorporate features such as self-lubricating capabilities, corrosion-resistant coatings, or sealed designs. These features help to protect the chain from wear, corrosion, and contaminants, extending its service life and reducing the frequency of chain replacements.
  • Improved Safety: Low maintenance drive chains contribute to improved safety in the workplace. With reduced maintenance requirements, there is a decreased need for personnel to access or interact with the chain system, minimizing the risk of accidents or injuries associated with maintenance activities. Additionally, reliable chain performance resulting from low maintenance helps ensure the safe operation of machinery and equipment.
  • Simplified Maintenance Routine: Drive chains with low maintenance requirements often have simplified maintenance routines. They may incorporate features such as easy-to-access lubrication points, quick-release pins, or self-adjusting mechanisms. These features simplify the maintenance process, making it more efficient and less time-consuming.
  • Enhanced Operational Efficiency: A drive chain with low maintenance requirements allows for continuous operation with minimal interruptions for maintenance. This enhances overall operational efficiency, as production processes can run for longer periods without the need for frequent stops or maintenance-related downtime.

It is important to note that even drive chains with low maintenance requirements still require periodic inspections to ensure proper functioning and detect any signs of wear or damage. However, the intervals between maintenance tasks are extended compared to traditional drive chains, resulting in improved operational efficiency and cost savings.

By utilizing drive chains with low maintenance requirements, industrial operators can benefit from reduced downtime, cost savings, increased reliability, extended chain life, improved safety, simplified maintenance routines, and enhanced operational efficiency in their applications.

drive chain

What are the benefits of using a corrosion-resistant drive chain?

Using a corrosion-resistant drive chain offers several benefits compared to standard chains when operating in corrosive environments. Here is a detailed explanation:

Corrosion-resistant drive chains are specifically designed and constructed to withstand the effects of corrosion, which can occur due to exposure to moisture, chemicals, saltwater, or other corrosive substances. The benefits of using such chains include:

  • Enhanced Durability: Corrosion-resistant drive chains are made from materials that have superior corrosion resistance, such as stainless steel or special coatings. These materials protect the chain from rust, oxidation, and other forms of corrosion, ensuring its durability and extending its service life.
  • Reliable Performance: In corrosive environments, standard chains can deteriorate quickly, leading to reduced performance, chain elongation, or even chain failure. Corrosion-resistant chains, on the other hand, maintain their structural integrity, allowing for reliable power transmission and consistent performance even in harsh conditions.
  • Reduced Downtime and Maintenance Costs: Using corrosion-resistant chains can reduce downtime and maintenance costs associated with chain replacement or repair. These chains are less prone to corrosion-related damage, reducing the frequency of maintenance tasks and the need for premature chain replacements.
  • Improved Safety: Corrosion-resistant chains provide increased safety in environments where standard chains might fail due to corrosion-related weaknesses. The risk of chain failure, sudden breakage, or accidents caused by chain-related issues is minimized, ensuring safer operation for both personnel and equipment.
  • Compatibility with Corrosive Environments: Corrosion-resistant chains are designed to withstand exposure to various corrosive substances and environments, including marine, chemical, or industrial settings. They are engineered to resist the damaging effects of moisture, chemicals, acids, or saltwater, making them suitable for applications where standard chains would be quickly compromised.
  • Application Versatility: Corrosion-resistant chains can be utilized in a wide range of industries and applications that require resistance to corrosion. These can include marine equipment, food processing machinery, chemical processing plants, wastewater treatment facilities, or outdoor equipment exposed to the elements.

It is important to note that while corrosion-resistant chains offer superior protection against corrosion, regular inspection and maintenance are still necessary to ensure optimal performance. Routine cleaning, lubrication, and monitoring for any signs of corrosion or damage are essential for maximizing the lifespan and performance of the chain.

By using corrosion-resistant drive chains, operators can benefit from increased durability, reliable performance, reduced maintenance costs, improved safety, and the ability to operate in corrosive environments without compromising the chain’s integrity.

China OEM 420 428 428h 520 530 630 Motorcycle Accessories Motorcycle Roller Drive Chain with CZPT Oil Seal  China OEM 420 428 428h 520 530 630 Motorcycle Accessories Motorcycle Roller Drive Chain with CZPT Oil Seal
editor by CX 2024-05-06

China manufacturer Industrial stainless steel roller chain drive chain conveyor motorcycle metal chain For Machinery

Product Description

Industrial stainless steel roller chain drive chain conveyor motorcycle metal chain For Machinery

Product introduction

Material Alloy steel,High carbon steel,40Mn,40Cr
Surface Treatment Polishing,Original Colour,Polishing
Applicable Industries Building Material Shops, Manufacturing Plant, Machinery ………
Standard or Nonstandard Standard
Heat Treatment: High Temperature Hardening

 

HIGH STHangZhouRD HEAT TREATMENT

Through high standards,strictly control the heat,improve the hardness/strength and provide service life.

HIGH QUALITY MATERIAL

Beautiful and corrosion-resistant, the product surface is treated with rust prevention, beautiful and simple!

STHangZhouRD THICKNESS CHAIN PIECE

The thickness is customized from raw material chain plate in strict
accordance with the standard

STHangZhouRD CHINAMFG PIN

Cutting in strict accordance with the standard, second screening,
and never cut corners

Green Power Industry Co Llimited is an international export enterprise combined with factory specializing in the manufacturing of brake system , clutch system,spark plug and chain . Our company is a professional manufacturer and supplier of brake,chain and clutch in China. We both have our own brake CHINAMFG factory, brake pad factory, brake shoe factory ,clutch disc factory,chain factory, spark plug factory .We focus on developing high-quality products for OEM market ,Our company have developed and produced high quality brake in formula non -metallic and asbestos free for automobile and brake shoe assembly for heavy duty truck . The production are noted good characteristics such as high strength , high heat-resisting , wear-resisting.low dust virtue ,no noise and better stability . The series products had been exporting to North -America ,Europe ,Middle -East ,Australia and etc, widely sale to domestic OEM factories and aftermarket.

Our company is composed of professional team , process advanced production inspection and testing equipment Each product have passed the first inspection, process inspection, error prevention, and laboratory tests to ensure that each piece of qualified products sent to customers

We are determined to set up the aim of “excellent quality and satisfying service·, with·the first class quality , reasonable price and perfect service . we set strick demand and operate conforming to the standard to guarantee all the products can be meet our customer’s needs
1.Q: What is the certificate of your factory?
   A: We have passed IAF ISO and TS16949  certification.

2.Q: Can it be produced according to the sample?
   A: Yes, we can produce through your samples or technical drawings. We can build molds and fixtures.

3.Q: Do you test all products before shipping?
   A: Yes, we conduct 100% quality testing before delivery, and we are 100% responsible for product quality.

4.Q: What is your delivery time?
   A:If we have stock, we can send it immediately within a week. If not, it usually ranges from 7 days to 35 days, depending on the quantity.

5.Q: What is your sample policy?
   A: We want to provide you with samples for approval. There will be no charge for 1 or 2 samples, but the customer needs to bear the courier fee first. 
It will be drawback to customer when order placed

6.Q: How do you make our business establish a long-term good cooperative relationship?
   A:1. We maintain excellent quality and competitive prices to ensure that our customers benefit;
      2. We respect every customer as our friend, we do business sincerely and make friends widely,No matter where they come from. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Transmission Chain, Conveyor Chain
Material: Stainless steel
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: 1/2"*3/32"
Structure: Roller Chain
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

drive chain

How does the design of a drive chain affect its efficiency and performance?

The design of a drive chain plays a crucial role in determining its efficiency and performance characteristics. Here is a detailed explanation:

The efficiency and performance of a drive chain are influenced by several design factors that are carefully considered during its development:

  • Chain Pitch and Size: The pitch and size of the chain links affect the load-carrying capacity, efficiency, and overall performance of the drive chain. A proper balance must be struck between chain size and strength to ensure optimal power transmission while minimizing friction and energy losses.
  • Roller Design: The shape and dimensions of the chain’s rollers impact its efficiency and performance. Well-designed rollers reduce friction and wear by promoting smooth rolling motion between the chain and the sprocket teeth. They also contribute to improved power transmission and reduced noise levels.
  • Plate and Pin Design: The shape and material of the chain’s plates and pins influence its strength, durability, and flexibility. Properly designed plates and pins ensure reliable power transmission, resistance to wear, and the ability to accommodate shock loads and varying torque conditions.
  • Sprocket Profile and Tooth Design: The design of the chain’s sprockets is critical for efficient power transmission. Sprockets with accurately machined teeth and suitable profiles minimize friction, ensure proper engagement with the chain, and facilitate smooth chain articulation. Well-designed sprockets reduce wear, noise, and energy losses.
  • Lubrication Features: Drive chain design often incorporates lubrication features such as oiling holes or grooves to facilitate proper lubricant distribution along the chain’s moving parts. Well-designed lubrication features ensure effective lubrication, reduce friction, prevent wear, and enhance the chain’s overall efficiency and lifespan.
  • Material Selection: The choice of materials for the chain’s components, such as the rollers, plates, pins, and bushings, significantly impacts its efficiency and performance. The selected materials must possess appropriate strength, wear resistance, and fatigue resistance to withstand the operating conditions and demands of the application.
  • Tensioning and Adjustment Mechanisms: Drive chain design often includes mechanisms for tensioning and adjusting the chain’s tension. Properly designed tensioning systems ensure optimal chain tension throughout its operation, promoting efficient power transmission, reducing chain vibration, and extending the chain’s service life.

A well-designed drive chain minimizes energy losses due to friction, reduces wear, and optimizes power transmission efficiency. It provides smooth and reliable operation, reduces noise levels, and contributes to the overall performance and longevity of the power transmission system.

It is important to note that drive chain design should consider the specific requirements and constraints of the application, including load capacity, speed, environmental conditions, and maintenance considerations. Regular inspection, lubrication, and proper tensioning are essential for maintaining the efficiency and performance of the drive chain over time.

By incorporating efficient design principles and considering the various factors that influence performance, manufacturers can produce drive chains that offer high efficiency, reliable power transmission, extended service life, and optimal performance in their intended applications.

drive chain

Can a drive chain be used in a marine or offshore environment?

Yes, drive chains can be used in marine or offshore environments with proper considerations and appropriate chain selection. Here is a detailed explanation:

In marine or offshore applications, where machinery and equipment operate in challenging conditions such as saltwater exposure, humidity, and corrosive environments, the use of drive chains requires specific measures:

  • Corrosion Resistance: When selecting a drive chain for marine or offshore environments, it is crucial to choose a chain made from corrosion-resistant materials such as stainless steel or coated chains. These materials can withstand the corrosive effects of saltwater and other harsh elements.
  • Sealing and Protection: Additional sealing and protection measures can be employed to safeguard the chain from water ingress and contamination. This may include the use of protective covers, seals, or enclosures to prevent direct exposure to seawater and other corrosive substances.
  • Lubrication: Regular and appropriate lubrication is vital to protect the chain against corrosion and ensure smooth operation. Lubricants specifically designed for marine or offshore applications should be used to withstand the demanding conditions and provide effective protection.
  • Maintenance: A comprehensive maintenance program is essential for maximizing the lifespan of a drive chain in marine or offshore environments. Regular inspection, cleaning, lubrication, and monitoring of the chain’s condition are necessary to identify and address any signs of corrosion, wear, or damage.
  • Environmental Considerations: Factors such as saltwater spray, wave impact, vibration, and temperature variations should be taken into account when designing and operating the machinery and equipment. Adequate shielding, proper drainage, and suitable ventilation can help mitigate the potential detrimental effects on the drive chain.

By considering these factors and implementing appropriate measures, drive chains can be successfully utilized in marine or offshore environments, providing reliable power transmission in applications such as ship propulsion systems, offshore drilling rigs, marine winches, and more.

drive chain

How do you properly tension a drive chain?

Tensioning a drive chain properly is important to ensure optimal performance, minimize wear, and prevent premature failure. Here are the steps to properly tension a drive chain:

  1. Identify the Tensioning Method: Determine the type of tensioning system used for your specific drive chain. Common tensioning methods include manual adjustment, automatic tensioners, or tensioning devices incorporated into the chain drive system.
  2. Refer to Manufacturer’s Guidelines: Consult the manufacturer’s guidelines or specifications for the recommended tensioning range and procedure specific to your drive chain. Manufacturers often provide specific instructions regarding the appropriate tensioning method and the acceptable slack or sag limits.
  3. Measure the Initial Tension: Measure the initial tension of the drive chain. This can be done using a tension gauge or by applying manual force to the chain at a specific point and measuring the deflection or sag. Ensure that the initial tension is within the recommended range specified by the manufacturer.
  4. Adjust Tension: If the initial tension is outside the recommended range, adjust the tension accordingly. For manual tensioning systems, typically a tensioning device, such as an adjusting bolt or eccentric cam, is used to increase or decrease the tension. Follow the manufacturer’s instructions for the specific adjustment mechanism.
  5. Check Alignment: While tensioning the chain, ensure that it remains properly aligned on the sprockets. Misalignment can cause uneven wear and premature failure. Make any necessary alignment adjustments as per the manufacturer’s recommendations.
  6. Recheck Tension: After tension adjustment and alignment, recheck the tension to ensure it falls within the recommended range. Use a tension gauge or follow the manufacturer’s guidelines for measuring the tension. Repeat the adjustment process if necessary.
  7. Verify Operation: After tensioning, operate the machinery or system with the tensioned chain and observe its performance. Check for any abnormal noise, vibration, or unusual wear patterns. If any issues persist, reevaluate the tensioning and alignment.

It is important to note that proper tensioning may require periodic rechecks and adjustments over time as the chain elongates or wears. Regular maintenance and inspections will help ensure the drive chain remains properly tensioned and aligned for optimal performance and longevity.

China manufacturer Industrial stainless steel roller chain drive chain conveyor motorcycle metal chain For Machinery  China manufacturer Industrial stainless steel roller chain drive chain conveyor motorcycle metal chain For Machinery
editor by CX 2024-05-03

China Professional Sprockets Drive Single Row Motorcycle Stainless Steel Roller Chain Manufacturer Factory

Product Description

Product Description

HangZhou HAYING TECHNOLOGY INDUSTRIES CO., LTD
We are a research and development production, distribution in 1 of the business enterprises. The main production of Marine anchor chain and hoist ring chain, hoist chain and various accessories.

Founded in 1965, has been producing Marine anchor chain (13-46) and elevator ring chain (13-30), plate chain and various types of machine accessories. Also distributes Japanese standard, American standard, German standard series chain, sprocket, can be processed according to the user’s drawing.

Products are widely used in agricultural machinery, lifting platform, food machinery, metallurgical machinery, mining machinery, engineering machinery, road construction machinery, CNC machinery and other industries.

Our high-quality products have won the recognition of the majority of users, the current products are not only sold to more than 30 provinces and cities in the country, but also exported to many countries in Asia, Europe and America.

Our company has a complete and scientific quality management system, we regard quality as the core element of the long-term development of enterprises. And has a mature production technology, good service attitude of the team. We will continue to strengthen the technology research and development and manufacturing capabilities of high-end products, and continue to introduce products with market competitiveness to meet the needs of our customers.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Machinery
Hardness: Hardened Tooth Surface
Manufacturing Method: Cast Gear
Toothed Portion Shape: Curved Gear
Material: Cast Steel
Customization:
Available

|

Customized Request

drive chain

How does the alignment of sprockets affect the performance of a drive chain?

The alignment of sprockets is critical for ensuring the optimal performance and longevity of a drive chain. Here is a detailed explanation:

The alignment of sprockets directly affects the following aspects of a drive chain’s performance:

  • Smooth Power Transmission: Proper alignment of sprockets ensures the smooth engagement and disengagement of the chain with the sprocket teeth. When the sprockets are aligned correctly, the chain articulates smoothly, minimizing friction, wear, and noise. This promotes efficient power transmission and prevents premature chain failure.
  • Reduced Wear and Elongation: Misaligned sprockets can cause uneven loading on the chain, leading to accelerated wear and elongation. When the sprockets are aligned, the chain experiences equal forces on all links, resulting in more uniform wear distribution and reducing the risk of chain elongation. Proper alignment helps maintain the chain’s pitch and overall length, ensuring consistent power transmission and extending the chain’s service life.
  • Minimized Side Loads: Misaligned sprockets can create side loads on the chain, causing it to run at an angle or contact the side plates excessively. This leads to increased friction, wear, and stress on the chain components. Proper alignment reduces these side loads, allowing the chain to run smoothly and minimizing unnecessary wear and stress on the chain’s components.
  • Prevention of Chain Skipping or Jumping: Misaligned sprockets can cause the chain to skip or jump teeth, resulting in loss of power transmission, erratic operation, and potential damage to the chain and sprockets. Proper alignment ensures that the chain remains engaged with the sprocket teeth, preventing any skipping or jumping and ensuring reliable power transmission.
  • Optimal Tension Distribution: Properly aligned sprockets contribute to the even distribution of chain tension. When the sprockets are aligned, the tension is evenly distributed along the chain, reducing the risk of localized stress points and chain elongation. This helps maintain consistent tension, improves power transmission efficiency, and extends the life of the chain and sprockets.

To achieve proper sprocket alignment, it is important to ensure that the sprockets are mounted securely, aligned parallel to each other, and positioned at the correct distance apart. Additionally, the sprockets should have the appropriate tooth profile and pitch diameter to match the chain’s specifications.

Regular inspection and maintenance are essential to verify and maintain sprocket alignment. This includes checking for signs of wear, damage, or misalignment, as well as periodically adjusting the tension and lubricating the chain as needed.

By ensuring the proper alignment of sprockets, operators can achieve smooth power transmission, reduced wear, minimized side loads, prevention of chain skipping, and optimal tension distribution. This ultimately improves the performance, efficiency, and reliability of the drive chain system.

drive chain

How does the weight of a drive chain affect its performance?

The weight of a drive chain can have some impact on its performance, although it is generally not a significant factor. Here is a detailed explanation:

The weight of a drive chain refers to the mass of the chain itself. While the weight of the chain may vary depending on its size, type, and material, it is typically not a critical consideration in most applications. Here are a few points to understand about the weight of a drive chain:

  • Inertia: The weight of the drive chain contributes to its inertia, which is the resistance to changes in motion. In high-speed or dynamic applications, such as robotics or automation, excessive chain weight can increase inertia and potentially affect the responsiveness and precision of the system. However, the weight of the chain is usually relatively small compared to other components in the system, and the impact on performance is often minimal.
  • Tension and Tensioning Mechanisms: The weight of the chain can influence the tensioning requirements and the design of tensioning mechanisms. Heavier chains may require stronger tensioning systems to maintain proper tension and prevent chain slack. It is essential to consider the weight of the chain when designing and implementing tensioning mechanisms to ensure optimal performance.
  • Load Capacity: The weight of the chain itself does not significantly affect the load capacity or strength of the chain. The load capacity is determined by the chain’s design, material, and construction. Proper chain selection based on the specific application requirements is necessary to ensure sufficient load-carrying capacity.
  • Installation and Handling: The weight of the chain can influence the ease of installation and handling, especially in larger or heavier chains. Proper lifting and handling equipment should be used to ensure safe installation and prevent injuries.

Overall, while the weight of a drive chain can have some minor influence on its performance in certain applications, it is typically not a critical factor. Factors such as chain design, material, lubrication, tension, and alignment have a more significant impact on the overall performance and reliability of the drive chain.

drive chain

Can a drive chain be used in agricultural machinery?

Yes, drive chains are commonly used in agricultural machinery due to their ability to handle heavy loads, operate in variable environmental conditions, and provide reliable power transmission. Here is a detailed explanation:

Agricultural machinery, such as tractors, harvesters, and conveyors, often require power transmission systems that can withstand the demanding conditions of agricultural operations. Drive chains are a popular choice for these applications due to the following reasons:

  • Load Capacity: Drive chains are designed to handle high loads, making them suitable for the heavy-duty requirements of agricultural machinery.
  • Variable Environmental Conditions: Agricultural operations can expose machinery to various environmental conditions, including dust, moisture, and temperature fluctuations. Drive chains can withstand these conditions better than some other power transmission systems.
  • Reliability and Durability: Drive chains are known for their durability and ability to withstand the harsh operating conditions often encountered in agricultural machinery. They are designed to resist wear and fatigue, providing reliable performance over extended periods.
  • Shock Load Handling: Agricultural machinery may experience sudden shocks or impacts during operation. Drive chains can effectively absorb and distribute these shock loads, minimizing the risk of component failure.
  • Flexibility: Drive chains offer flexibility in terms of design and configuration, allowing them to be adapted to various agricultural applications. They can be easily customized to fit different machinery setups and operating requirements.
  • Ease of Maintenance: Drive chains are relatively easy to maintain, with straightforward lubrication and tensioning requirements. They can be inspected, adjusted, and replaced if needed, without requiring complex procedures or specialized tools.

By utilizing drive chains in agricultural machinery, farmers and operators can benefit from reliable and efficient power transmission, even in demanding and dynamic agricultural environments.

China Professional Sprockets Drive Single Row Motorcycle Stainless Steel Roller Chain Manufacturer Factory  China Professional Sprockets Drive Single Row Motorcycle Stainless Steel Roller Chain Manufacturer Factory
editor by CX 2024-05-03

China Custom Best Quality Simplex Drive Conveyor Transmission Industrial 25 35 40 41 50 60 80 Roller Chain

Product Description

            Welcome to visit Xihu (West Lake) Dis. CHINAMFG mechanical (chain )factory .
We produce a wide range power transmission products. Such as roller chains and leaf chains, conveyor chains, drive chains, agricultural chains .
Also we can supply all kinds of industrial sprockets, chain couplings.

Established in year of 2000. With over 20 years history of specializing in the roller chains producing. With stable and good quality. We now have gained customer’s high praise from at home and abroad.
Our manufacturing plant and workshop area is over 10000 square CHINAMFG and with staff is about 70. We are the middle scale factory in China.
Our chain quality can match with GB,DIN,ASA,ANSI,JIS standard.and have gain the ISO9001 Certificate.

Till  now, except for the domestic market, we have exported many chains to USA, CANADA,COLOMBIA,BRAZIL,ARGENTINA,POLAND, ITALY,SPAIN AND SO ON.

1.Standards: ISO /DIN /ANSI/GB/JIS/ASA
2. Model: 06C-35-240, 04B-48B Simplex, Duplex, Triplex AND ACCORDING TO CUSTOMER’S REQUIREMENTS
3. Materials: Carbon steel 40Mn,# 10 FOR THE ROLLER AND BUSH,40CR FOR THE PIN
4. All spare parts of chains are heat treated(quenching and tempering) and controlled in a reasonable tolerance range and suitable for the industry standard.
5. Tensile strength: more higher than the standard about 15%
6. Certificate of Quality: ISO 9001
7. Good lubrication with excellent grease.
8. Color: Self color and shot peen.
9.Can match with sprockets freely

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Surface Treatment: Polishing
Structure: Roller Chain
Material: Carbon Steel
Type: Short Pitch Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

drive chain

Can a drive chain be used in a glass or ceramics manufacturing application?

Yes, a drive chain can be used in glass or ceramics manufacturing applications where reliable and efficient power transmission is required. Here is a detailed explanation:

In glass or ceramics manufacturing, various types of equipment and machinery are utilized for processes such as mixing, molding, shaping, drying, and firing. Drive chains offer several advantages in these applications:

  • High Load Capacity: Drive chains are known for their high load-carrying capacity, making them suitable for handling heavy loads and transmitting power in glass or ceramics manufacturing equipment. They can effectively transmit power to drive mechanisms involved in mixing blades, conveyor systems, kilns, and other equipment.
  • Precision Power Transmission: Drive chains provide precise power transmission, ensuring accurate and synchronized movement of the machinery and equipment in glass or ceramics manufacturing. This allows for reliable and efficient production processes, precise positioning, and synchronized operation of the various components.
  • Robustness and Durability: Glass or ceramics manufacturing environments can be demanding, with high temperatures, abrasive materials, and heavy-duty operations. Drive chains are designed to withstand these harsh conditions, providing durability, resistance to wear, and long service life, even in high-demand applications.
  • Flexibility and Adaptability: Drive chains offer flexibility and adaptability in designing and configuring the machinery and equipment used in glass or ceramics manufacturing. They can be easily integrated into different types of conveyors, mixers, kilns, and other equipment, allowing for smooth and efficient material flow and process control.
  • Compatibility with Auxiliary Components: Drive chains can be easily combined with auxiliary components commonly used in glass or ceramics manufacturing, such as tensioners, guides, sprockets, and bearings. This ensures reliable and efficient power transmission throughout the entire system and facilitates easy maintenance and replacement when necessary.
  • Cost-Effectiveness: Drive chains offer a cost-effective solution for power transmission in glass or ceramics manufacturing applications. They have a long service life, reduced maintenance requirements, and lower replacement costs compared to some alternative power transmission systems.

It is important to consider the specific requirements of the glass or ceramics manufacturing application when selecting a drive chain. Factors such as load capacity, speed, environmental conditions, and maintenance considerations should be taken into account.

Regular maintenance, including inspection, lubrication, and tension adjustment, is crucial to ensure optimal performance and longevity of the drive chain in glass or ceramics manufacturing applications.

By utilizing drive chains in glass or ceramics manufacturing, operators can benefit from high load capacity, precise power transmission, durability, adaptability, and cost-effectiveness, contributing to efficient and reliable manufacturing processes.

drive chain

Can a drive chain be used in heavy-duty industrial applications?

Yes, drive chains are commonly used in heavy-duty industrial applications due to their ability to handle high loads, endure harsh environments, and provide reliable power transmission. Here is a detailed explanation:

In heavy-duty industrial applications, where large machinery and equipment are involved, drive chains offer several advantages:

  • Load Capacity: Drive chains are designed to handle heavy loads, making them suitable for industrial applications that require the transmission of substantial power and torque.
  • Durability: Drive chains are known for their durability and ability to withstand demanding conditions. They are designed to resist wear, fatigue, and shock loads, providing reliable performance over extended periods.
  • Harsh Environment Resistance: Industrial environments can expose machinery to extreme temperatures, dust, dirt, moisture, and chemicals. Drive chains are designed to withstand these harsh conditions, ensuring reliable operation and minimizing the risk of failure.
  • Flexibility and Adaptability: Drive chains offer flexibility in terms of design and customization. They can be adapted to various industrial applications, including conveyors, heavy machinery, material handling systems, and more.
  • Cost-Effective Solution: Drive chains are generally cost-effective compared to other power transmission systems. They provide reliable performance at a competitive price point, making them a preferred choice for heavy-duty industrial applications.

It is important to select the appropriate drive chain type, size, and material for the specific heavy-duty industrial application. Additionally, proper maintenance, including regular inspection, lubrication, and tension adjustment, is essential to ensure optimal performance and longevity of the drive chain in heavy-duty industrial environments.

drive chain

What are the maintenance requirements for a drive chain?

Maintaining a drive chain is crucial for ensuring its optimal performance, longevity, and safe operation. Here are the key maintenance requirements for a drive chain:

  • 1. Lubrication: Proper lubrication is essential to reduce friction, prevent wear, and minimize corrosion. Apply the recommended lubricant to the chain as per the manufacturer’s guidelines. The frequency of lubrication depends on factors such as operating conditions and the type of lubricant used.
  • 2. Tension Adjustment: Regularly check the chain tension to ensure it is within the manufacturer’s specified range. Proper tensioning prevents excessive slack or over-tightening, both of which can lead to premature wear or component damage. Adjust the tension as needed, following the manufacturer’s guidelines.
  • 3. Alignment: Check the alignment of the drive chain to ensure it runs smoothly and evenly on the sprockets. Misalignment can cause uneven wear and decreased performance. Adjust the alignment if necessary, following the manufacturer’s instructions.
  • 4. Cleaning: Periodically clean the drive chain to remove dirt, debris, and contaminants that can accelerate wear and affect performance. Use a suitable cleaning agent and a brush to carefully clean the chain, and ensure it is thoroughly dried before lubrication.
  • 5. Inspection: Regularly inspect the drive chain for signs of wear, damage, or elongation. Look for worn-out links, rollers, or plates, as well as signs of corrosion or rust. Check for any abnormal noise, vibration, or performance issues during operation. Address any identified issues promptly.
  • 6. Replacement: Eventually, even with proper maintenance, a drive chain will reach the end of its service life. Monitor the chain’s condition and replace it when it shows signs of significant wear, elongation beyond acceptable limits, or severe damage that cannot be repaired.

Following these maintenance requirements will help maximize the performance and lifespan of the drive chain, minimize downtime, and ensure safe and reliable operation in various applications.

China Custom Best Quality Simplex Drive Conveyor Transmission Industrial 25 35 40 41 50 60 80 Roller Chain  China Custom Best Quality Simplex Drive Conveyor Transmission Industrial 25 35 40 41 50 60 80 Roller Chain
editor by CX 2024-04-30

China supplier Agricultural Automobile Engine Drive Transmission Driving Conveyor Sprocket Link Lifting Roller Chain

Product Description

How to keep your  harvester running in top condition?
Maintain your machine timely, and keep enough stock of  harvester parts.

How to keep your  harvester running in top condition? Maintain your machine timely, and keep enough stock of  harvester parts.
Quality and cost-saving CHINAMFG harvester parts have a profound impact on the way the farmer running their crops

We are an over 20 year experience agriculture parts manufacturer.TiHangZhou aims to manufacturer a wide selection of combine harvester parts. 
Since our market has huge users of  harvester, so we know very well what our clients need for the  harvester parts.

You can find the full scope of Kubota/Yanmar/World harvester parts .
We will be proud to be listed on your long-term harvester spare parts manufacturers or other  spares suppliers in the soon future

Product Description

Brand agrotianda
Package Wooden case / Carton / nude package/frame
Trademark customizable
HS 8433909000
Origin ZheJiang ,china
Production Capacity 15000 Tons / Year

                   
       DHangZhou TIHangZhou INTELIGENT TECHNOLOGY Co., Ltd. is a high tech company specializing in R&D, design, manufacture, sales and service of high-tech agricultural equipment. TIHangZhou’s products are widely used in farmland, orchard, forest plant protection, and other fields. 
TIHangZhou has professional product technology talents and experienced team, not only provide customers with quality products, first-class technology, but also provide with perfect and thoughtful service. TIHangZhou committed to be your ideal partner and will always be committed to your requirement. TIHangZhou has applied for a number of national patents, will build mature laboratories and production workshops. At present, the domestic business has expanded to Northeast China and other places in China, and has established close cooperative relations with customers in Indonesia, Malaysia, Thailand, Myanmar, Brazil, Peru, Ecuador, Columbia more than 30 countries.

FAQ

1. What’s the MOQ? 

A:Each partnumnber at least 20 pcs.

2.Which brand do you produce?
A:We can produce spare parts of World /Yanmar/Kubota/Mubota harvester.

3. How to order parts?
A:Send me partnumber and qty , I will according qty give you best price.

4.What’s your Payment terms?
A:30% payment in advance by TT, 70% balance before delivery.

Q5:How long is your delivery time?
A:World/Yanmar/Kubota parts 7-15 days,Mubota parts 20-30 days.

 

After Sales Service

PRE-SALES                                 AFTER SALES

*Inquiry and consulting support                * training how to instal the machine
* View  factory                                              * training  how to use the machine

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Spare Parts
Usage: Harvester
Material: Material
Power Source: No
Weight: 1lbs
After-sales Service: Free Spare Parts
Customization:
Available

|

Customized Request

drive chain

How does the design of a drive chain affect its efficiency and performance?

The design of a drive chain plays a crucial role in determining its efficiency and performance characteristics. Here is a detailed explanation:

The efficiency and performance of a drive chain are influenced by several design factors that are carefully considered during its development:

  • Chain Pitch and Size: The pitch and size of the chain links affect the load-carrying capacity, efficiency, and overall performance of the drive chain. A proper balance must be struck between chain size and strength to ensure optimal power transmission while minimizing friction and energy losses.
  • Roller Design: The shape and dimensions of the chain’s rollers impact its efficiency and performance. Well-designed rollers reduce friction and wear by promoting smooth rolling motion between the chain and the sprocket teeth. They also contribute to improved power transmission and reduced noise levels.
  • Plate and Pin Design: The shape and material of the chain’s plates and pins influence its strength, durability, and flexibility. Properly designed plates and pins ensure reliable power transmission, resistance to wear, and the ability to accommodate shock loads and varying torque conditions.
  • Sprocket Profile and Tooth Design: The design of the chain’s sprockets is critical for efficient power transmission. Sprockets with accurately machined teeth and suitable profiles minimize friction, ensure proper engagement with the chain, and facilitate smooth chain articulation. Well-designed sprockets reduce wear, noise, and energy losses.
  • Lubrication Features: Drive chain design often incorporates lubrication features such as oiling holes or grooves to facilitate proper lubricant distribution along the chain’s moving parts. Well-designed lubrication features ensure effective lubrication, reduce friction, prevent wear, and enhance the chain’s overall efficiency and lifespan.
  • Material Selection: The choice of materials for the chain’s components, such as the rollers, plates, pins, and bushings, significantly impacts its efficiency and performance. The selected materials must possess appropriate strength, wear resistance, and fatigue resistance to withstand the operating conditions and demands of the application.
  • Tensioning and Adjustment Mechanisms: Drive chain design often includes mechanisms for tensioning and adjusting the chain’s tension. Properly designed tensioning systems ensure optimal chain tension throughout its operation, promoting efficient power transmission, reducing chain vibration, and extending the chain’s service life.

A well-designed drive chain minimizes energy losses due to friction, reduces wear, and optimizes power transmission efficiency. It provides smooth and reliable operation, reduces noise levels, and contributes to the overall performance and longevity of the power transmission system.

It is important to note that drive chain design should consider the specific requirements and constraints of the application, including load capacity, speed, environmental conditions, and maintenance considerations. Regular inspection, lubrication, and proper tensioning are essential for maintaining the efficiency and performance of the drive chain over time.

By incorporating efficient design principles and considering the various factors that influence performance, manufacturers can produce drive chains that offer high efficiency, reliable power transmission, extended service life, and optimal performance in their intended applications.

drive chain

What are the benefits of using a silent drive chain?

Using a silent drive chain, also known as a noise-reduced or low-noise chain, offers several benefits compared to standard drive chains. Here is a detailed explanation of the benefits of using a silent drive chain:

  • Noise Reduction: The primary benefit of a silent drive chain is its ability to reduce noise during operation. Silent chains are designed with specialized features that minimize vibration and noise generation, resulting in quieter operation compared to standard chains. This is particularly advantageous in applications where noise reduction is critical, such as in residential areas, offices, or noise-sensitive environments.
  • Smooth Operation: Silent drive chains are engineered to provide smoother operation with reduced friction and vibration. This results in improved overall system performance, reduced wear on components, and enhanced efficiency.
  • Improved Performance: By reducing noise, vibration, and chain backlash, silent drive chains can help improve the performance and accuracy of the driven system. They minimize the risk of unwanted oscillations or inaccuracies, ensuring precise and reliable power transmission.
  • Extended Service Life: The reduced friction and vibration in a silent drive chain contribute to less wear and stress on the chain and associated components. This can result in an extended service life compared to standard chains, reducing the frequency of replacements and maintenance requirements.
  • High-Speed Capability: Silent drive chains are designed to operate at high speeds without compromising performance or generating excessive noise. This makes them suitable for applications that require high-speed power transmission, such as machinery, conveyors, or automation systems.
  • Reliability: Silent drive chains maintain the same reliability and durability as standard chains. They are designed to withstand demanding operating conditions, provide high load-carrying capacity, and resist wear, fatigue, and corrosion.

The use of silent drive chains is particularly beneficial in applications where noise reduction, smooth operation, precise control, and extended service life are important considerations. It is important to select the appropriate silent chain type, size, and material based on the specific application requirements for optimal performance and noise reduction.

drive chain

What is a drive chain and how does it work?

A drive chain is a mechanical component used to transmit power from one part of a machine or system to another. It typically consists of a series of interconnected links or rollers that form a flexible and durable mechanism. Drive chains are commonly used in various applications, including bicycles, motorcycles, industrial machinery, and automotive systems.

The working principle of a drive chain involves the transfer of rotational motion or power from a driving sprocket or gear to a driven sprocket or gear. Here is a step-by-step explanation of how a typical drive chain works:

  1. The driving force is applied to the first component of the drive chain, usually a sprocket.
  2. As the driving sprocket rotates, it engages with the links or rollers of the chain.
  3. The driving force is transferred from the driving sprocket to the chain links or rollers.
  4. The chain links or rollers transmit the rotational motion to the driven sprocket.
  5. The driven sprocket, connected to the driven component, rotates and transfers the power to the intended mechanism, such as wheels or other moving parts.

The efficiency and performance of a drive chain depend on factors such as the quality of the components, proper lubrication, tension adjustment, and maintenance. It is crucial to ensure the chain is properly aligned and tensioned to minimize wear and maximize power transfer.

Overall, drive chains play a vital role in power transmission by efficiently transferring rotational motion from one component to another, enabling the operation of various mechanical systems.

China supplier Agricultural Automobile Engine Drive Transmission Driving Conveyor Sprocket Link Lifting Roller Chain  China supplier Agricultural Automobile Engine Drive Transmission Driving Conveyor Sprocket Link Lifting Roller Chain
editor by CX 2024-04-30