China Best Sales Steel Work Sprocket with Hub and Keyway

Product Description

  

1.Chain used

sprocketes are manufactured with a tooth profile and dimensional precision to bring out the maximum performance of the chain you will use.

2. Number of teeth

sprockets are available with small and large numbers of teeth to match your usage conditions.
 

Single pitch sprocket

Double pitch sprocket

*Chain matched:35(06C) /06BTeeth:from 9-120

*Chain matched:40(08A) /08BTeeth:from 9-120

*Chain matched:50(10A) /10BTeeth:from 9-120

*Chain matched:60(12A) /12BTeeth:from 9-120

*Chain matched:80(16A) /16B Teeth:from 9-120

*Chain matched:100(20A)/20B Teeth:from 9-120

*Chain matched:120(24A) /24B Teeth:from 9-120

*Chain matched:140(28A) /28B Teeth:from 9-120

*Chain matched:160(32A) /32B Teeth:from 9-120

*Chain matched:200(40A) /40B Teeth:from 9-120

*P=25.4mm Teeth:from 7-100

 

*P=31.8mm Teeth:from 7-100

 

*P=38.1mm Teeth:from 7-100

 

*P=50.8mm Teeth:from 7-100

 

*P=63.5mm Teeth:from 7-100

3. Consturction

4. Material

Carbon Steel, Stainless Steel,Aluminum, Nylon, POM, Copper, Brass,42CrMo,40Cr,A3 and so on.

5. Bore

Pilot bore, finished bore, taper bore, bearing hole and special bore

6. Treatment

Heat Treatment: Hardening and Tempering, High Frequency Quenching, Carburizing Quenching and so on.

 

Surface Treatment: Zinc Plating, Chrome plated, Black oxide Treatment, Spray Paint, Mirror Finish, Sand-blasting and so on.

FAQ

1. Are you manufacturer or trade company ?
    We are a manufacturing factory founded in 1987 ,with trade team for international service.
2. What terms of payment you usually use ?
    T/T . 30%  deposit ,and 70% before finish production .Price :FOB ZheJiang .
3. Can you make products according to customer”s design ?
    Yes , we can make according to customer”s drawing and samples .OED and ODM are acceptable.
4.How long is your delivery time ?
   Genarally it is 5-15 days afte rthe deposit .It will take more days customized.
5. What do I need for offering a quote ?
   Please offer us 2D or 3D drawing (with material ,dimension,surface treatment and other technical  datas etc.), quantity ,or samples .
   Then we will quote the best price .
 
 
 

Standard Or Nonstandard: Standard
Application: Electric Cars, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

4012-6018
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

wheel sprocket

Alternatives to Chain Sprockets in wheel sprocket Configuration

While chain sprockets are commonly used in wheel sprocket configurations, there are alternative methods for power transmission in various applications:

  • Gear and Gear Rack: Gears are toothed wheels that mesh with each other to transmit power. Instead of using a chain and sprocket, gears can directly engage with each other, offering a smooth and efficient power transfer. Gear racks, which are linear gears, can be used in place of wheels for linear motion applications.
  • Belt and Pulley: Belts and pulleys offer a flexible and quiet means of power transmission. They work similarly to chain and sprocket systems but use belts instead of chains. Pulleys have grooves that grip the belt, allowing power to be transferred between the pulleys.
  • Gear Train: A gear train consists of multiple gears meshed together to achieve specific speed and torque ratios. Gear trains are often used in complex machinery and mechanical systems where precise power transmission is required.
  • Direct Drive: In some applications, direct drive mechanisms can be used, where the motor or power source is directly connected to the wheel or load without any intermediate components like sprockets or gears.
  • Friction Drive: Friction drive systems use the friction between two surfaces to transfer power. One surface, such as a rubber wheel, is pressed against another surface to achieve power transmission.

The choice of alternative power transmission methods depends on various factors, including the application requirements, available space, speed, torque, and efficiency considerations. Each alternative method has its advantages and limitations, and the selection should be based on the specific needs of the mechanical system.

When considering alternatives to chain sprockets, it is essential to analyze the requirements of your application and consult with engineering experts or manufacturers to determine the most suitable method of power transmission for optimal performance and longevity.

wheel sprocket

Using a Belt Sprocket in Place of a Chain Sprocket with a Wheel

Yes, in many cases, a belt sprocket can be used in place of a chain sprocket with a wheel, provided that the system is designed to accommodate the change.

Both chain sprockets and belt sprockets serve the same fundamental purpose of transferring rotational motion and power between the wheel and the driven component. However, there are some important considerations to keep in mind when replacing a chain sprocket with a belt sprocket:

  • Alignment: Belt sprockets and chain sprockets must be aligned properly with the wheel to ensure smooth and efficient power transmission. Any misalignment can cause premature wear and reduce the system’s overall performance.
  • Tension: Chain-driven systems require specific tension to prevent slack and maintain proper engagement between the sprockets and the chain. Belt-driven systems, on the other hand, require appropriate tension to prevent slippage. Ensuring the correct tension for the specific type of sprocket is crucial for reliable operation.
  • Load Capacity: Consider the load capacity and torque requirements of the system when selecting a belt sprocket. Belt sprockets may have different load-carrying capabilities compared to chain sprockets, and using the wrong type can lead to premature wear or failure.
  • Speed and RPM: Belt-driven systems may have different operating speeds and RPM limits compared to chain-driven systems. Ensure that the selected belt sprocket can handle the desired rotational speed without exceeding its design limitations.
  • System Design: Changing from a chain-driven system to a belt-driven system (or vice versa) may require modifications to the overall system design, including the size of the sprockets and the layout of the system. Consult with an engineer or a qualified professional to ensure that the replacement is appropriate and safe.

Overall, replacing a chain sprocket with a belt sprocket can be a viable option in certain applications. However, it’s essential to consider the factors mentioned above and evaluate the compatibility of the new sprocket with the existing system to achieve optimal performance and longevity.

wheel sprocket

How Does a wheel sprocket Assembly Transmit Power?

In a mechanical system, a wheel sprocket assembly is a common method of power transmission, especially when dealing with rotary motion. The process of power transmission through a wheel sprocket assembly involves the following steps:

1. Input Source:

The power transmission process begins with an input source, such as an electric motor, engine, or human effort. This input source provides the necessary rotational force (torque) to drive the system.

2. Wheel Rotation:

When the input source applies rotational force to the wheel, it starts to rotate around its central axis (axle). The wheel’s design and material properties are essential to withstand the applied load and facilitate smooth rotation.

3. Sprocket Engagement:

Connected to the wheel is a sprocket, which is a toothed wheel designed to mesh with a chain. When the wheel rotates, the sprocket’s teeth engage with the links of the chain, creating a positive drive system.

4. Chain Rotation:

As the sprocket engages with the chain, the rotational force is transferred to the chain. The chain’s links transmit this rotational motion along its length.

5. Driven Component:

The other end of the chain is connected to a driven sprocket, which is attached to the component that needs to be powered or driven. This driven component could be another wheel, a conveyor belt, or any other machine part requiring motion.

6. Power Transmission:

As the chain rotates due to the engagement with the sprocket, the driven sprocket also starts to rotate, transferring the rotational force to the driven component. The driven component now receives the power and motion from the input source via the wheel, sprocket, and chain assembly.

7. Output and Operation:

The driven component performs its intended function based on the received power and motion. For example, in a bicycle, the chain and sprocket assembly transmit power from the rider’s pedaling to the rear wheel, propelling the bicycle forward.

Overall, a wheel sprocket assembly is an efficient and reliable method of power transmission, commonly used in various applications, including bicycles, motorcycles, industrial machinery, and conveyor systems.

China Best Sales Steel Work Sprocket with Hub and Keyway  China Best Sales Steel Work Sprocket with Hub and Keyway
editor by CX 2023-11-08